Models and Peterson’s
Algorithm

This is Peterson’s algorithm:

boolean[] enter = {false, false}; int yield = & || 1;

thread f, thread t;
1 while (true) { while (true) {
// entry protocol // entry protocol
3 enter[0] = true; enter[1] = true; 12
4 yield = 0; yield = 1; 13
5 await (lenter[1] await (!enter[6] 14
|| yield != 0); || yield !=1);
6 critical section { ... } critical section { ... } 15
7 // exit protocol // exit protocol 16
8 enter[0] = false; enter[1] = false; 17
9 } } 18

The successors of (yield = 0,6, enter[0] = T,>14, enter[1] = T)
are:

1. The fp successor is

(yield = 0,3, enter|0] = F,>14, enter[1] = T).
2. The f; successor is

(yield = 0,8, enter[0] = T,>14, enter[1] = T).
3. The t; successor is

(yield = 0,6, enter[0] = T,>15, enter[1] = T).
4. There is no t; successor.

7145

This is Peterson’s algorithm:

boolean[] enter = {false, false}; int yield =0 || 1

thread f, thread t;

1 while (true) { while (true) { 10

2 // entry protocol // entry protocol 1

3 enter[0] = true; enter[1] = true; 12

4 yield = o; yield = 1; 13

5 await (lenter[1] await (lenter(0] 0
|| yield != 0); || yield !=1);

6 critical section { ... } critical section { ... } 15

7 // exit protocol // exit protocol 16

s enter[0] = false; enter[1] = false; =

9 } } 18

The successors of (yield = 0,6, enter[0] = T,>14, enter[1] = T)
are:

1. The fp successor is

(yield = 0,3, enter|0] = F,>14, enter[1] = T).
2. The fp successor is

(yield = 0,8, enter[0] = T,>14, enter[1] = T).
3. The t; successor is

(yield = 0,6, enter[0] = T,>15, enter[1] = T).
4. There is no t; successor.

7145

How can the t; successor of

(yield = 0,6, enter[0] = T,>14, enter[1] = T) be

(yield = 0,6, enter[0] = T,>15, enter[1] = T)? Both threads are in
their critical sections.

« State (yield = 0,6, enter[0] = T,>14, enter[1] = T) does not
exist.

» There is a bug in Peterson’s algorithm.

» The previous slide was wrong.

- State (yield = 0,6, enter[0] = T,>14, enter[1] = T) is never
entered.

8/45

How can the t; successor of

(yield = 0,6, enter[0] = T,>14, enter[1] = T) be

(yield = 0,6, enter[0] = T,>15, enter[1] = T)? Both threads are in
their critical sections.

« State (yield = 0,6, enter[0] = T,>14, enter[1] = T) does not
exist.

» There is a bug in Peterson’s algorithm.

» The previous slide was wrong.

+ State (yield = 0,6, enter[0] = T,>14, enter[1] = T) is never
entered.

8/45

What does Peterson’s algorithm achieve?

1. Mutual exclusion using only atomic reads and writes
2. Mutual exclusion and first-come-first-served fairness
3. Mutual exclusion using busy waiting

4. Mutul exclusion using test-and-set operations

9/45

What does Peterson’s algorithm achieve?

1. Mutual exclusion using only atomic reads and writes
2. Mutual exclusion and first-come-first-served fairness
3. Mutual exclusion using busy waiting

4. Mutul exclusion using test-and-set operations

9/45

What properties does the following state/transition diagram show?

D)

>2 | >3
ty”7 by

"

>1 | >3 >2 | >4
\n\,x toT

>1 | >4

1. No deadlocks can occur

2. There are no race conditions

3. No starvation can occur, but deadlocks may occur
4. Neither deadlocks nor race conditions may occur

10/45

What properties does the following state/transition diagram show?

2

>2 | >3
ty”7 by

"

>1 | >3 >2 | >4
\n\} to

>1 | >4

1. No deadlocks can occur
2. There are no race conditions
3. No starvation can occur, but deadlocks may occur

4. Neither deadlocks nor race conditions may occur

10/45

Which of the following are strategies to avoid deadlocks?

. Using locks
. Requiring that all threads acquire locks in the same order
. Limiting the amount of concurrency

AW N =

. Using counting semaphores instead of binary semaphores

11/45

Which of the following are strategies to avoid deadlocks?

1. Using locks

2. Requiring that all threads acquire locks in the same order
3. Limiting the amount of concurrency
4

. Using counting semaphores instead of binary semaphores

11/45

